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I. SUMMARY 

The concept of blowing large bubbles from a visco-elastic 

material has been suggested as a means of constructing en- 

closures in space. The dynamics of the inflation of such 

bubbles are investigated here by analyzing a variety of problems. 

The steady inflation of a spherical bubble is considered first, 

to determine the radius/time history of a spherical film subject 

to variable mass flux of pressurizing gas. A self-similar 

analysis of the gas motion is included. Acoustic oscillations 

of a bubble about its equilibrium state are considered next with 

an explicit formula derived for the frequency of the fundamental 

mode of oscillation. The limiting case of incompressible flow 

is considered, with the conclusion that it is valid only for 

thick-walled bubbles. Low frequency instabilities during infla- 

tion are considered last. After deriving the fluid dynamical 

equations, a quasi-steady approximation is carried out for thick- 

walled bubbles. 

Finally, the differential equation is derived for the per- 

turbed motion of a thin-walled bubble as a generalization on the 

work of Plesset. By means of example the instabilities are shown 

to,be related to the inflation history of the bubble. 
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II. INTRODUCTION 

Conventional structures have little application in large- 

sized spacecraft design owing to the severe weight penalty im- 

posed on the rocket booster, Thus a variety of structural types 

have been studied for space application. One such type, the in- 

flatable structure, has the obvious advantages of lightweight 

and compact storage and has, in fact, been used in actual space 

operations. In these operations, inflation of the structure pro- 

duces a large change of volume by inextensible deformations of 

the structural shell (or membrane), which is stored by folding 

into a relatively small volume. (The mathematics of folding 

deformations has been investigated in Ref, 1). Because of the 

problems associated with the folding operation, alternative 

approaches are worth exploring, In one such approach, a lump of 

visco-elastico-plastic material is inflated in a spherically sym- 

metrical manner analagous to blowing a soap bubble, 

The bubble material must possess fluid properties to permit 

the enormous elongation occurring during the inflation process, 

On the other hand, the final equilibrium state is best maintained 

as an elastic solid. Materials having these properties are used 

in many industrial processes involving the "blowing" of thin 

plastic films, Their non-Newtonian characteristics (viscosity 
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dependent on time, strain, wall thickness, etc.) may be explained 

by the fact that they actually are solids held in solution. The 

solvent diffuses to the surfaces and evaporates during inflation. 

Thus the material becomes more viscous, then plastic, and finally 

elastic as the solvent evaporates. In addition, strain hardening 

produces further resistance to flow owing to orientation of the 

polymer chains in the direction of strain. 

Some preliminary experiments with a commercially available 

solventized Polyvinyl alcohol compound have been conducted. 

Spheres up to 8" diameter were produced in a moderate vacuum 

by insertion of atmospheric air into a small droplet of material 

(Fig. 1). Spheroids up to 6 ft. diameter were made in free air 

by inflation of larger drops with neutrally buoyant Helium- 

Nitrogen mixture (Fig. 2). Film thickness of the order of 

2,4 and of surprising uniformity could be achieved by careful con- 

trol of the inflation process (although unstable fluctuations were 

observed under some conditions). The significant result of this 

experimentation was the confirmation of the initial suspicion that 

the dynamic stability of the inflation process is a controlling 

factor in the reduction to practice of this concept. 

For successful application, the inflation process must be 

stable. Since experimental testing in a space environment is 
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excessively costly, analytical studies must be made prior to 

actual flight tests. The present report is a study of the 

dynamics of the bubble inflation process. The material properties 

of the bubble film were assumed to be either purely elastic (as 

surface tension) or purely fluid, corresponding to late or early 

times in the inflation process, respectively. During the fluid 

phase, the motion was assumed to be sufficiently rapid that the 

inertia terms in the governing equations of motion were dominant, 

permitting an inviscid analysis. This approach is justified only 

by the preliminary nature of this study; in a more comprehensive 

study the effects of the viscous terms should be ascertained. 

This report is divided into three parts, in which three 

basically different problems are analyzed: 

1) uniformly expanding bubble, 

2) oscillations about the equilibrium state, and 

3) stability of the inflation process. 

The first part is necessary to provide basic information to de- 

termine the time behavior of the fluid properties, to provide input 

data for the stability analysis, and possibly to provide a basis 

for a rational design. The second part relates to the bubble 

behavior at termination of the inflation process, and also pro- 

vides input data for Part III. The final part then takes up 

the fundamental question of stability of various phases of the 

inflation process. 



Figure 1. Sphere Blown in Vacuum Bell Jar 

Figure 2. Sphere Blown in Air 



III. INFLATION PROCESS 

Consider a spherical annulus of material enclosing a volume 

of gas which may be continuously introduced at the center. The 

annular film will be assumed to have the properties of an in- 

viscid fluid, including surface tension. Now consider this 

annulus placed into a vacuum. Owing to the introduction of gas, 

the bubble expands with time and the film thickness decreases. 

Hence, initially the mass of the film may be large compared with 

that of the enclosed gas: after a sufficient time has elapsed, 

the reverse will be true. In the general case, we see that the 

dynamics of both gas and fluid film must be considered. 

In this section we develop three models for the inflation 

process. The first model, thick film, light gas, accounts for 

the fluid flow within the film but neglects any pressure change 

within the gas: this model should apply to the early stages of 

the inflation process. 

In the second model, thin film, light gas, the flow within 

the film is neglected also, but the mass of the film is retained 

as a parameter. This more approximate model cannot be applied 

at as early a time as the thick-film model, but the additional 

approximation permits a simpler analysis. Since the density of 

the film is of the order of 1000 times that of the gas, the 



thin film model should apply over a wide range of conditions. 

The third model, thin film, heavy gas, is developed to 

ascertain the importance of the momentum of the gas itself, 

which was neglected in the other models. This model applies at 

a late time after a large mass of gas has been introduced into 

the bubble; consequently the mass of the film may be neglected. 

A self-similar flow analysis is formulated, including surface 

tension but neglecting the mass of the film with respect to 

that of the gas. 

A. Thick Film, Light Gas Model 

Let r, be the inner radius and r2 the outer radius of 

the fluid film, and u the radial velocity at any radius. Then, 

regarding the fluid as incompressible, the continuity equation 

for purely radial, time dependent flow may be written as 

& (Al) = 0 , Q(t) u = - 
4lT2 

or 

Q(t)=; 3 (" rrf) = -$ (: 77x-:) 

(la) 

(lb) 

Here Q(t) has the physical significance of the instantaneous 

volume flux crossing a sphere of any radius. The pressure in 

the fluid, assumed inviscid, satisfies the momentum equation 
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Q2W 1 8n2r5 

Integrating with respect to r, the pressure distribution is 

obtained as 

Here pi(t) is the pressure in the fluid film evaluated at the 

inner radius r 1' The last term represents the well-known 

dynamic pressure, and the second term the unsteady component 

of Bernoulli's equation. 

NOW let p,(t) be the pressure in the fluid film at the 

outer radius and p,(t) the pressure in the gas at the 

radius of the film. Then if T is the surface tension 

film*, the pressure 

p,(t) = g 

jump across the film is given by 

PC)(t) = PI(t) + = 
I1 

inner 

of the 

(3a) 

(3b) 

Evaluating (2) at the outer surface and combining with (3), 

the gas pressure at rl is found: 

p()(t) = 2+&t ";R(" (k - $)- p;;;(t)($ --$) (4) 

* The surface tension of the liquid-vacuum interface at r2 is 
assumed to be the same as that of the liquid-gas interface at rl 



The inner and outer radii rl and r2 are related by the mass of 

fluid in the film 

(5) 

or 

r2 = [ztr:]"" 

Hence, with Q(t) given by (lb), a prescribed variation of 

either rl or r2 allows determination of the gas pressure at 

the inner film radius rl. Eliminating Q(t), (4) becomes 

NOW assume quasi-steady conditions in the gas subject to 

isentropic expansion with time: that is, the expansion process 

is sufficiently slow and the gas sufficiently light that the 

pressure is essentially uniform throughout the pressurizing gas. 

Then pO-pG and 

p /p Y = constant 
G G 

where pG = MG/$7rr: , or 

3Y 
PO r1 = G = constant 
MGY 

(7) 

thus specifying rl(t) determines p,(t), which in turn determines 

M&) l These conditions are needed for design of a pressurizing 

system. 
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Alternatively, we may specify either p,(t) or MG(t) and 

seek to determine rl(t). Equation (6) is then a second order, 

non-linear differential equation for rl. In this case, numeri- 

cal or analog procedures are required for the solution. However, 

it is possible to proceed analytically if the fluid film is thin, 

as outlined in the following section. 

B. Thin Film, Liqht Gas Model 

Denote d = r2-r1 , and consider 6 << rl = a . 

From continuity we have 

I1 ( ) 2 

r2= 5 I1 

0 

2 
.'l r1 '12 

r2= < rlt2-- 
r2 r2 [ I 

3 
rl l- - 
'2 

Now in limit 6 -0, '2 +rl - a . Hence to first order in 6 

' [aa rlrl-r2r2 = a - 6a2]t 6(6/a)2 

i(rf-rt) = 6 f a2+e(6/a)2 
0 

With these limiting expressions and noting ,oF6 --) MF/47ra2 , 

equation (6) takes the appropriate form for the thin film approxi- 

mation:* 

* Since this equation is a direct form of F=Ma, it is apparent 
that equation (14) could be written in a similar form in terms 
of an effective film radius. However, the force terms would be 
rather complicated in that case. 
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PO(t) = 
(8a) 

(8b) 

Here again MG is given in terms of p, by (7). 

The equilibrium condition is given by a= 0: 

(9) 

Now consider po- l/a; then (8b) becomes a linear equation. 

Two cases are possible depending on the magnitude of p,, either 

greater or less than the equilibrium value. If Po > 4T/a, then 

a grows exponentially: a-e At , p. -e -Xt, M We(3Y-llY)Xt 
g 

correspqnding to exponentially increasing inflation rate. How- 

ever, if p. < 4T/a, the bubble radius varies sinusoidally (at 

least through a half-period): a - sin Ot, PO -l/sin Wt, 

M 
g ( 

- sin Ot) 3Y-l/Y 

This case cannot correspond to the initial phase of inflation 

since the growth of the bubble comes about from the inertia of 

the film (initial conditions), the pressure never exceeding the 

restoring force of surface tension. 

Now let us turn to the non-linear problem. If we regard p, 

as a function of a, equation (8b) can be integrated by an in- 

version of the variables. Writing 'i = i & (i) = -&(ik2) , 

(8b)becomes 

$(p) = 4a 
MF 

a(pOa-4T) 
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Since the variables are separable, integration is easy: 

5 = {a:-% ~T(a2-a~)-~poa2cl~~ (10) 

Inverting the variables, we obtain 

- 

t-ti a. 1 2 
877 

v2 

= -- - MF P 
poa2da 

a. 1 
I} 

da (11) 
1 

Hence if p 
0 

is prescribed (or Mg) the bubble history can be 

determined by quadrature. 

Example 1: Explosive Inflation. Suppose Mg = constant: then the 

bubble is pressurized initially with the entire mass of gas avail- 

able.* Then ai = 0, 

Hence from (11) 

-3Y I and from (7) p. = GMY a . 
cl 

-3(Y-1) 
"i -a -(a2 -a?) da 

Now 7’ = 5/3 for a monatomic gas, such as helium; for this value 

of Y the integral can be reduced to standard form: 

t-ti = t-ti = w 

o!= 

(a/ai)2 
w 

I 
G Mg513 

4VTai4 ' 

GM 5'3 
a!=g , 

4~Ta.i~ 

(12) 

The integral is recognized as an arc sine: inverting gives the The integral is recognized as an arc sine: inverting gives the 

bubble radius versus time for y = 5/3: 

* Note that this condition is incompatible with neglect of pressure 
variation in the gas when the bubble ultimately becomes very large 
and very thin. This effect is investigated in the next section. 
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(13) 

From this result the non-linear oscillation of the inviscid 

bubble is evident. The maximum radius of the bubble is 

a max = +ai =dz (14) 

showing that the smaller the initial radius, the larger the 

maximum radius, as a consequence of the increased work of com- 

pression of the gas. 

Example 2: Constant Pressure Inflation. The mass flow rate of 

pressurizing gas may be controlled by a regulator such that the 

gas pres.sure remains constant.* In this case equation (11) re- 

duces to - 92 

-6Ta2+a3 da 
PO i 

The cubic in the radicand is easily factored. One root is 

obviously a = ai; the remaining roots are found by the quadratic 

formula. Hence 

da 

ai) (a - bl) (a - b2) 

* In a throttling process the parameter G is not constant. For 
simplicity we assume some pressurizing process which allows 
G = constant. 
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where 

(15) 

4T 
We note that > 0 since ai < a eq=- * PO 
Defining 

a- ai sin'@=- , k2 = %-b2 
a- bl al-b2 

the integral may be written in the standard form 

which is recognized as the incomplete elliptic integral of the 

first kind. 

Inverting the expression, the bubble radius is given in terms 

of a Jacobi elliptic function (Ref. 2): 

a - a. 1 sin2 x(t - ti) 
-= = 
ai-bl l- sin2 X(t - ti) 

tn2 x( t - ti) (16) 

where x = 
r77Po;;;bZ/l 1'2 . 

On applying this solution we see 

immediately that a 2 ai for bl 5 ai and a s a. 1 for bl z al, 

in order that the functions have real values. The condition 

bI = ai is equivalent to the pressure condition p. = 3 # 
1 

which corresponds to equilibrium at the initial condition. Hence 

for greater pressure, bi < a. 1 and the bubble must expand: for 

smaller pressure, the reverse is true. 

An interesting characteristic of the solution is that the 

bubble radius becomes infinitely great in finite time: this 

14 



limiting time is 

3MF 
'Lim -9 = zn~g(ai-bZ) K(k) (17) 

Since an infinite mass of pressurant must be delivered in this 

period of time, we see that in practice the constant pressure 

phase will terminate at a somewhat shorter time, depending on 

the amount of pressurizing gas available. Following this phase 

an oscillation of the bubble with constant mass would occur, 

similar to that treated in Example 1. 

C. Thin Film-Heavy Gas Model 

In the preceding models of the inflation process, the 

total mass of the injected gas was assumed to be negligible com- 

pared with the fluid film, thus allowing uniform pressure 

throughout the gas. Since the liquid density is of the order 

of 1000 times that of the gas, the approximation should be valid 

over a large range of conditions, However for the applications 

considered here, the mass of pressurizing gas will ultimately 

exceed that of the film. In this section, an analysis of the gas 

motion is formulated and a particular solution is set up. 

For the-boundary conditions of this problem, it appears 

natural to formulate the equations using the Lagrangian system 

(coordinates following the moving particles). We take as inde- 

pendent variables the time t and the mass m, defined as the mass 

15 



of gas contained between a sphere of arbitrary radius r and the 

bubble film at r = a. Then it is required to determine the 

dependent variables r, p, p as functions of m and t. The equa- 

tions of motion are continuity, momentum, and a relation between. 

the thermodynamic variables p and p . 

Continuity ar 1 
am = -- 41rpr2 

Momentum a2r i ap 'C -- - 
at2 P ar 

But 

1 a2, * -- = 
4nr2 at2 am 

Isentropic Flow p/py = K = constant 

(18) 

Hence 

(19) 

(20) 

In general, these non-linear partial differential equations 

must be solved by numerical methods. However, under certain con- 

ditions, the equations may be reduced to ordinary differential 

equations, a great advantage in carrying out solutions. In 

particular, we shall be interested in solutions for which the 

bubble grows as a power of time. 

Appearing in the three equations of motion are five vari- 

ables r, p, P , m, t, having three independent dimensions, mass, 

length, and time. Since we have three dependent variables, the 

solutions can be expressed in terms of only one independent vari- 

able if all variables can be formed into four independent non- 

16 



dimensional groups. The theory of dimensional analysis (Ref. 3) 

ensures that this is possible if only two dimensional constants 

appear in the problem, in addition to the five variables just 

mentioned. One of these constants is the isentrope K. For the 

problem of interest here, we take the surface tension, T, as 

the remaining constant; hence, we regard the film mass as negli- 

gible in this analysis. The four independent non-dimensional 

groups may be chosen as 

m/Tt2, r/At +2y/3y-1 pt 2y/3y-1 
Pt 

2/3y-1 
# B ' C 

where 

A = (KTy-l) 
-1/3y-1 

B = (T2Y,K)1’3y-’ 

C = (T2/K3) 
1/3y-1 

(21a) 

(21b) 

(21c) 

Hence we seek solutions of the form 

r = At2~/3~-1 R(P) (22a) 

p = Bt -2y/3y-1 
P(P) t22b) 

p = ct -2/3y-1 
WCL) (22c) 

where (22d) 
p=JE 

Tt2 
Solutions of this form are called self-similar, because their 

form depends only on the similarity variable/ . 

17 



Thus 
(r/a) = R&4/R(O), P/P0 = p(!4/p(0), p/p0 = H(p)/H(O) 

When these expressions are substituted into the equations 

of motion, the explicit time dependence cancels out, leaving 

a set of ordinary differential equations in terms of the variablep: 

Continuity 

R2W e = - 4n&J 

Momentum 

Isentropic Flow 

t23a) 

. 
1/(Y - 1) 

(3Y- u2 
R(P) = g (23b) 

(23~) 

The boundary condition to be satisfied by the solution 

must also be expressible in terms of p alone. Neglecting the 

film mass, the force balance at the film becomes 
7m 

or in terms of the similarity variables (with M = 0 at the film) 

2 
P(O) = R(O) t23d) 

The pressure functionP(p)can be eliminated from equation 

(23b) to yield a non-linear second order differential equation 

for R(CL). Because of the complexity of this equation, numerical 

methods of solution appear most appropriate. However, certain 
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results are apparent from the form of solution. Thus the bubble 

radius grows as a power of time 

a = AR(O) t 2~13~4 

as does the pressure at the film surface 

p(O,t) = BP(O) t -2y'3y-1 

The mass flow rate of gas introduced at the center is determined 

from the condition R(pmax) = 0; hence 

m max = P max Tt2 

Thus, the mass flow rate is linearly increasing with time. 

Since the acceleration of the gas particles is negative, the 

pressure must increase from the center outward. This pressure 

increase is given by 

P(O* t) - P(m max' t) = B [P(O) - P(/.dmax,l t 
-2y'3y-1 

Because of the preliminary nature of this study, the 

differential equations were not integrated to determine the 

constants in these relations, although it would be desirable to 

compare these results with those of the simpler theory in the 

preceding section. A remarkable property of this system of 

equations is that the solution is completely prescribed by only 

one boundary condition. Starting the integration at the film 

surface (cl = 0), the parameter R(o) may be prescribed arbitrarily. 

However, through equations (23d), (23c), and then (23a) in suc- 

cession, the derivative R'(o) is uniquely determined. Then by 
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integrating until R(/L,,, )= 0,the similarity parameter at the 

center of the sphere is determined.* Thus a single parameter 

family of solutions is obtained for a given gas. 

* This condition may not be satisfied for all initial values. 



IV. ACOUSTIC OSCILLATIONS ABOUT EQUILIBRIUM 

As a result of the inflation process, the bubble tends to 

oscillate about its equilibrium state. Spherically symmetric 

oscillations of large amplitude can be treated by the theory of 

the preceding section: however, the effects of the gas motion 

are important at the late stages of development of the bubble 

and the large amplitude analysis then becomes excessively diffi- 

cult for the general case. By limiting the analysis to small 

amplitude oscillations about the equilibrium state, the analysis 

becomes much simpler and, moreover, is easily generalized to mode 

shapes which are not spherically symmetric. An acoustic analysis 

of this type is best suited to slowly inflated bubbles, their 

low kinetic energy limiting the oscillation to small amplitude. 

Acoustic oscillations in a spherical container is a classi- 

cal problem, dealt with in standard texts. Lamb (Ref. 4) presents 

an analysis of the characteristic frequencies of vibration of a 

gas contained in a rigid sphere and in a spherical surface, under- 

going radial oscillations. The surface tension boundary condition 

is dealt with also, for the case of vibrations of an incompressible 

liquid drop. Hence our analysis will follow those of Lamb, but 

will include surface tension and mass of the liquid film surround- 

ing a compressible gas. Since we are concerned with the final 

equilibrium state of the bubble, the film will be assumed to have 

negligible thickness. 
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A. General Analysis 

The velocity potential ti in gas dynamics is def,ined by 

v’ = grad # (24) 

In the acoustic approximationQC satisfies the linear wave 

equation 
a2QG 

V2qbG = 1 - 
c2 at2 

(25) 

where C is the speed of sound in the unperturbed gas. If 

we consider sinusoidal oscillations about equilibrium, we may 

@ iUt G = @e (26) 

where @does not depend on time. Then4 must satisfy the 

Helmholz equation 

(v2tk2)@ = 0 (27) 

where k= W/C . Solutions of this equation, in terms of 

spherical polar coordinates, r, 8, X , may be expressed in terms of 

spherical harmonics (see Ref. 4, p. 503); for a solution regular 

at the origin 

@ = CAnen rnSn(8, X) (28a) 

where tin is given in terms of Bessel functions of fractional 

order* 

write 

z”$,(z’ = d- EJ nt l/2(” (28b) 

* These functions can be written in closed form in terms of trigo- 
nometric functions. 
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In the linear theory, the boundary conditions may be applied at 

the unperturbed surface r = a. For the potential given by (28a) 

the velocity and pressure at the surface are 

u(a1t) a@G [ 1 = ar = ~An[n4n(ka1)+kal~d(kall al-‘S,(8, A) eiWt (29a) 
r=a 1 

PO -PC a@, = [ 1 -- = 
PC 

at 
-ia CAnQn(kal) a: S,(8, A) eiWt 

r=a 1 
(2%) 

Note that the symbol(-) denotes the unperturbed value. 

corresponding to these results, the motion of the inner film 

surface is given by 

rl-al = Ju(al, t)dt = - i C AnCnQn(kal)+ kaltiA(kal)l al n- l S,(8 ) A) eiut 

In the fluid film, the velocity potential satisfies 

Laplace's equation ( c --toa in incompressible fluid): 

V28, = 0 (30) 

The solution for simple harmonic motion in the fluid film is 

then expressed as the series 

@F = C(Bnrn+ Cnrmn) S,(8, X) eiUt (31) 
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The velocity and the pressure at any radius are 

a@F 
u(r,t) = 7 = E(nBnrn-'- nCnrmn-l) S,(6), 1) eiwt 

(324 

P- & a@, = -- = 
pF at 

-io C(Bnrnt Cnrmn)Sn(6, A) eiUt 
(32b) 

Now the boundary conditions at the inner film surface are con- 

tinuity of velocity and jump of pressure due to surface tension; 

following Lamb, the pressure jump condition is 

pO -PI =&,= T + (n- l)(n+ 2) 
2 (rl - al) 

al 

Hence the velocity and pressure matching conditions at r = r1 

take the form 

A,[nQ,(kal) t ka@A(kal)l = n[B,- Cna;2n] (33a) 

PG 
- - A&Jn(kal) 1 = -(n-l)(ntZ) T 

pF 
3 2 An[ndJn(kal) + kaltiA(kal)l 

'Fal o (33b) 

The third boundary condition is the pressure jump at the outer 

surface: for an external vacuum 

2T 

p2=T=T 
+ (n- l)(n+ 2) (r 

2 2-"2) 
a2 
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with 

12-a2 = J'u(a2, t) = -A Cn(Bnac-l-Cnain-l) Sn(8, A) eiWt 

This condition becomes 

CBntCna2-2n] = n(n- l)(n+2) Tg 2 (Bn- Gna2-2n) (33c) 
PFa2W 

Equations (33) are three homogeneous equations for the three 

unknowns. To have other than the trivial solution, the de- 

terminate of the system must vanish, ,i.e., 

-1 al 0 -2n 
- 
"2 

al 
0 

-2n 
- 
"2 

= 0 

where Sn = n(n-l)(nt2) T 
PFa3 bJ2 

I and the dependence 

of @, and +A on kal is understood. Expanding the determinant 
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The frequency w occurs explicitly in S,andk, and implicitly 

in $n through its dependence on k . 

B. Compressible Bubble of Zero Thickness 

For large thin bubbles, the effect of the film mass is 

negligible compared with that of the gas. In this case we let 

a2 -+a1 -a and the characteristic equation takes the form 

) kt+] (35a) 

The speed of sound in the 

,2 -yp G -- - 
pG 

gas is given by 

Then with the equilibrium pressure condition* FG =F 

the definition of k, we find 

and 

FG - a3u2 
T 

= 4yk2a2 

and the characteristic equation reduces to 

(n- l)(nt 2) 

2yk2a2 

(3%) 

(36) 

Now let us consider some special cases. The fundamental mode 

n = 0 is that of purely radial oscillation, and is the one most 

likely to occur. 

Case 1: n = 0. Noting the identity 

G,(z) = E J1,2(z) = e 

* The factor 4 arises because the liquid film has both an inner 
gas-liquid surface and outer vacuum-liquid surface. 
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we find 

z +; (z) 

9, tz) 
= z cot z - 1 

Then the characteristic frequencies for the fundamental mode 

must satisfy the equation 

cotz = l-yz2 
Z (37) 

where z stands for ka = LQ% . The two sides of this equation 
C 

are graphed in Figure 3; from the graph it is seen that the 

roots of the characteristic equation are approximated by rnr , 

m = 1, 2, 3, the approximation being asymptotically correct 

for large m. 

I cot z 
and 

&/'- 
I \\ !\ 

Root 

Figure 3 Graph of cot Z, solid, and i(l-y~'), dashed 
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This fact suggeststhat an asymptotic expansion is an appropriate 

procedure for solving the characteristic equation. Also from 

the graph we see that the iterative procedure 

z(i+ 1) = mg tarccot(-yz (i) + L . 
z(l)) 

beginning with z (1) =m7r , converges to the correct answer. 

Using this procedure together with the expansion 

1 l t arc cotx = - - - . . . 
X 3x3 

the asymptotic formula for the characteristic frequency is 

obtained: 

ua - = 
C 

m77 
1 

1 - +2 t . . . 
Ym = I 

This two-term formula is correct to within l/2 % for m = 1, 

Y = 1.4. Obviously it will be much better for m > 1. The 

wave length of the vibration is 

x = 1 1+ l t . . . 
2a 

m 1 ym27r2 1 

(38) 

(39) 

For the lowest frequency (m = l), we obtain(A/2a) = 1.08. 

Thus our analysis for the bubble yields a lower frequency than 

does Lamb's analysis for a gas-filled rigid sphere (x/2a = O.cgg), 

as expected. 
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C. Incompressible Bubble Limit 

For oscillations of low enough frequency, the mass of 

pressurizing gas would be expected to flow as an incompressible 

fluid against the restoring force of surface tension. The 

question to be answered here is whether the frequency of 

assumed incompressible oscillations is low enough to justify 

the assumption. 

An incompressible fluid may be defined as one for which 

the speed of sound is infinitely greater than the particle 

velocity of the fluid itself. Hence returning to equation (35a), 

we need only evaluate the right hand side in the limit k -, 0. 

From the series expansion of the spherical Bessel functions we 

find 

z & (4 z2 
rl,(z) - - 2nt3 i-3 0 . 

Hence we obtain the characteristic frequency for an incompressible 

droplet in a vacuum: 

(P a3 w - = 2 n(n-l)(nt2) T 
:, 

Noting again that our T is the surface tension for only one side 

of the liquid film (accounting of the factor of 2 ), this formula 

is seen to agree exactly with Lamb's formula for a liquid drop. 

We note that oscillations are not possible for n = 0 (pure radial 

motion) because of the infinite stiffness, nor for n = 1 (pure 
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lateral translation) because of the lack of a restoring force. 

Now let us regard the formula as applying to low frequency 

oscillations of a gas. Again using (35b), we have 

(WA) = #pyY 

The lowest frequency possible is that for n = 2. The wave 

length for this frequency is 
x = 9-1 
2a 4 

From this result we conclude that the incompressible model of 

bubble oscillation is not valid for the conditions considered 

here: namely, mass of bubble film negligible compared with that 

of the gas. Since oNlll/m, it appears that the incompressible 

model is applicable only for film mass of the order of 100 times 

the mass of enclosed gas. This condition,which would exist only 

during the early stages of the inflation process, will be 

analyzed in the following section. 
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V. LOW FREQUENCY INSTABILI'IY OF INFLATION PROCESS 

In the last section, we considered neutral oscillations about 

the equilibrium state. Since no processes of dissipation or 

excitation were involved, these oscillations are neutrally stable. 

However, the inflation process is inherently different, since 

the introduction of gas may serve as a source of energy for un- 

stable perturbations from the desired bubble growth history.* 

In this concluding section of our study, we consider the problem 

of low-frequency instability. Besides simplifying the analysis 

considerably, as already shown in the preceding section, it is 

felt that restriction to low frequencies places the emphasis on 

the dominant mode of instability, since initially the actual film 

material exhibits strongly viscous properties (although here 

approximated as inviscid), which should severely damp high 

frequency oscillations, As shown previously, low frequency oscil- 

lations can occur only during the early stage of the inflation 

process while the film is relatively massive compared with the 

gas pressurant. 

* A source of energy for growth of an unstable mode is the dis- 
tinguishing feature between passive and active systems and 
their well-known dynamic characteristics. 
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A. Related Literature 

In recent years, some effort has been devoted to bubble 

dynamics because of interest in several unrelated fields, among 

which we mention underwater explosions and boiling heat transfer. 

Perhaps the first analysis of significance is that of Taylor 

(Ref. 5), who considered a plane interface between two fluids 

of different densities. His analysis showed that instability 

resulted if the interface accelerates toward the medium of higher 

density. This type of instability is now regarded as "classic" 

and is one of several called "Taylor instability". In 1953 

Binnie (Ref. 6) applied the methods of Rayleigh and Lamb, for 

the vibration of a liquid drop, to the new problem of stability 

of an expanding bubble. His analysis showed that a growing 

bubble is unstable, a shrinking bubble stable, and that the insta- 

bility is of the type found by Taylor. Binnie assumed the 

perturbations to be exponentially time dependent, which limits 

his results to the initial phases of the instability and slow 

expansions; more significant, however, is that the boundary 

conditions were evaluated at the interface of the unperturbed 

bubble, whereas the perturbed surface must be considered for a 

growing bubble. The problem was reformulated by Plesset (Ref. 7), 

who corrected the error of Binnie. In the same year Birkhoff 

(Ref. 8) carried out an asymptotic analysis of a collapsing bubble 

without surface tension and concluded that the collapsing bubble 
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is unstable for sufficiently small radius. Neither of these 

analyses were limited to exponential time dependence. Plesset 

and Mitchell (Ref. 9) carried out analytical solutions for arbi- 

trary radius, with and without surface tension, based on the 

earlier formulation of Plesset, Their analysis, neglecting the 

fluid density on the interior of the bubble, showed that a per- 

turbation initially grows for the case of an expanding bubble but 

not for a collapsing bubble (except near zero radius). However, 

when the perturbation amplitude is normalized with respect to the 

mean bubble radius, the perturbation remains finite for all time. 

These conclusions were reached for the special case of a bubble 

growing at constant internal pressure, corresponding to a vapor 

bubble in a liquid bath. For other types of bubbles, it is con- 

ceivable that different conclusions would result.* 

B. Dynamical Equations for Thick-Walled Bubble --~ 

T'he analyses described above were primarily concerned 

with thin vapor bubbles immersed in an infinite liquid bath. 

In contrast, the problem of concern to us includes both thick and 

thin-walled bubbles being blown at an arbitrary rate in a vacuum 

* Cole (Ref.10) reports on numerical solutions by Penney and 
Price for a pulsating gas sphere immersed in a liquid. The 
internal pressure was given by the isentropic pressure-volume 
relationship, corresponding to a constant mass of internal gas. 
Their results were in qualitative agreement with Plesset and 
Mitchell, showing the largest perturbations near zero radius. 
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environment. In this section, the analysis is formulated for 

thick-walled bubbles subject to low frequency oscillations about 

a slowly varying radius. With these restrictions, the pressurizing 

gas may be treated as an incompressible fluid, simplifying the 

analysis to a great degree. In the following development, the 

bubble will be assumed to expand into an external atmosphere: 

this additional effect will be important in laboratory simulation. 

Let the shape of the inner film surface be given by 

rl = al(t) + 61(t)Sn (e, A! 

and that of the outer surface 

r2 = a2 (t) + b2(t) Sn (6, A) 
bY 

(40a) 

(40b) 

where al and a2 are slowly changing functions of time and Sn is 

a surface harmonic as introduced in Section IV. Now the velocity 

potential, satisfying Laplace's equation, can be written as the 

sum of two terms: 

m=*+i 
where @ represents the radial expansion and@l 

(41) 
the oscillatory 

component. Then conservation of mass requires 
2 0 2 

Q 
> "I al a2 2 

a = --=- -=- 
47rr r r I421 

The perturbation potential in terms of spherical harmonics is 

given by the expressions (also satisfying Laplace's equation): 
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2 = A(t) rn Sn (6, A) for r 5 rl (43a) 

rn + C(t) rmn-' 1 S,(e, A) for rl 5 r 5 r2 
Q1 = D(t) r -n-1 sn (e, A) for r 2 r2 

(43b) 

(43c) 

The parameters A, B, C, D, must be chosen to satisfy the boundary 

conditions. At the perturbed inner surface the velocity must be 

continuous and equal to the derivative of (40a): 

0 
.&a = dr1= 
ar dt al + 61 Sn (e,a) 

rl 
Noting that 

we find (to first order in 6) 

1 A= - 
n na 1 

while continuity of velocity at r1 requires 

n+l B = - -2 n-l 
n al C=A 

At the outer perturbed surface we require 
= d’2 - = a2 + 62 

dt sn (es a) 

r2 
Proceeding as above we find 

n na 
2 

B - (nt 1) a2-n-l c = - (nt 1) aTn-' D 

and ntl 
a2 D=- - 
n+l 2 62+a262 1 

(44a) 

(44b) 

(44c) 

(44d) 
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The remaining two conditions relate the pressure jump due 

to surface tension at each of the two surfaces to the curvature 

at each surface. For unsteady flow, the Bernoulli equation is 

&a 1 
p+q+p,,=f(t), q=zp 

( 1 
ti2 
ar 

(Note that the time dependent part of f(t) may be absorbed in 

@ with no loss of generality.) Following Lamb (Ref. a), the 

pressure jump across each interface is given by 

AP = T 2 + (n-1) (n+2) 
a 2 

6s 
n a 

Evaluating each term of the unsteady Bernoulli equation from (42) 

and (43) and expanding non-linear terms in 6 (retaining only 

first order terms), the pressure jump at rl is given by 

v 
&i 
at 

I- 
.,,y,,, 

9 tension 

Similarly, the pressure jump condition at the outer surface 

becomes 

(&-De) $6:+ P& i +pFain-l C-peain-l Dt(PF-Pe)a2d2 = -(n-l)(nt2)? 
(44f) 

Equations (44) provide six linear differential equations 

for the six functions A, B, C, D, hl, and 62. In general, these 

equations cannot be uncoupled in a simple manner. Hence we shall 

not attempt to solve them exactly. Instead we shall first seek 
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an approximate solution, based on a quasi-steady state assumption, 

for slowly expanding bubbles. Following this, an exact solution 

of the equations will be sought for cases in which the.bubble 

film is sufficiently thin that flow within the film may be 

neglected, although the mass of the film will be retained. The 

latter analysis is thus an extension of Plesset's analysis for a 

simple interface. 

C. Quasi-steady Analysis for Thick-walled Bubbles 

Let us now assume that the mean bubble radius changes 

very slowly. Then we may regard the coefficients in equations 

(44a) - (44f) as constants over a few cycles of oscillation of 

the perturbation. With this assumption, we look for solutions as 

complex exponential functions of time: 

til = 6, e 
iwt 

, ti2=tj2 e 
iot , A=Aeiot, B=BeiWt, 

where the barred quantities are slowly varying functions of time, 

treated as constants. Then whenever a time derivative of one 

of these variables occurs, it may be replaced by (iW) times that 

variable. In this way we obtain a set of linear algebraic equations 

in the barred quantities. The system can be reduced to three 

equations if A, D, and D are eliminated by use of (44a), (44b), and 

(44c): 
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Since the equations are homogeneous, the frequency w is 

determined by the vanishing of the determinant of the system, 

in order to avoid a non-trivial solution. 

Note that equation (45) contains eleven parameters: 

n, T, w, ,al, a2, gl, g2, pFJ pG2 p,,Q, sothat a'general solution by 

numerical methods appears formidable. However, the theory of 

dimensional analysis (Ref, 2) permits a considerable reduction 

in the number of independent variables. The parameter ;2 may 

be eliminated by conservation of mass in the film (az,a,=af A, ). 

Thus with ten dimensional parameters in three independent 

dimensions (mass, length, time) we can have only 7 non-dimen- 

sional groups. We choose 

n, Sz = 3, T=T/ 
al 

pF al (~1)2, 

(45a) 

(4-1 

(45c) 

a2 a= / 
al' 

F = &4nal(al)2, kl= 'G, 
PF' 

k2 = pe, 
PF 

(46) 
In these variables, the characteristic equation appears as 
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(ntl) kZntl- 1) ncyn(nt 2) 

oo! 
ntl -n(n-l)(nt2)7+(1-kl) [*+(n+2)0+ C?] 0 

[(%) o(2n+l+1]n s-2cP2 (sz+2) (n-l)(nt2)+(1-k2)(FtS?) 

+ n-l k2 0 (1 tCM3) 

=o 

(47) 

Of special interest is the case n = 2 (lowest mode) which 

would be expected to be least affected by viscosity, and 

kl = k2 = 0. Further if we consider a particular type of bubble 

growth, such as constant volume flux (Q = constant), then Q is 

given, and the problem is reduced to three variables: 

Numerical calculations then become practical, and the results 

could be presented on a single graph: for example, a curve 

showing neutral stability on a graph of cy versus T .* 

Note that the present theory would not be expected to hold for 

01 near 1, as we have shown in a previous section that the film 

mass must be large to have low frequency oscillations. 

In this section we have reduced the problem of stability 

of thick-walled bubbles to a straightforward numerical calcula- 

tion of the complex frequency. Direct analytical results for 

* By setting !+. = 0, the motion of the inner surface becomes 
uncoupled from that of the outer surface. The value of the 
determinant then becomes the product of the terms on the 
principal diagonal. The two factors containing surface 
tension then separately determine the stability of the two 
surfaces. For al = a2 = 0, the result reduces to that ob- 
tained by Lamb for a spherical drop (Ref.4 ). 
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this case do not appear to be forthcoming. However, if the 

bubble film is thin, so that flow within the film is negligible, 

then an analytical approach including the effects of the mass 

of the film is possible. An analysis of this type is carried 

out as the final section of this report. 

D. General Analysis of Thin-walled Bubbles 

In making the thin-film approximation r2+rl , the 

variables of the fluid mechanical problem are greatly reduced 

in number. Thus dropping 15~ , B and C from consideration leaves 

only three variables 61(= 6) , A, and D, to be determined from 

(44a), (44d), and (44e). Actually (44e) gives only the pressure 

jump across the inner film surface: both surfaces are included 

by subtracting (44f) from (44e). In addition we include a term 

representing the pressure necessary to accelerate the mass of the 

film (let mF be mass of film per unit surface area). With 

a2 = al q 
a, 62~61~6, BFCEO , the pressure jump condition 

becomes 

(Fe 
66 

- PG) - 
-n-l 

47ra2 
+ Pea D- 3 At (p,-pG)a6 = 2(n-l)(nt2) 2 + mF 6 (48a) 

a 

Now (44a) and (44d) take on the values 

n an A = -(ntl) amnS1 D = 2 ag t ai (4-1 

Hence the time derivatives become 

anA= L ag - (n-3)ag- 2 n 
. (48~) 
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-n-l a D=- & 

Also by (42) 

Q= 
47r 

$ (a2 a) = a2 at 2 a a2 

(484 

(48e) 

With these additional relations, (48a) becomes a second order 

differential equation for b : 

(49a) 

where 
2n(n-l)(ntl)(nt2)(T/a2)-[n(n-1)s - (n+l)(n+2)PG1 a 

cy = [nPe f (n+l)pGl a 
(49b) 

n(nt1) m 

fl = ' + C"p,t(ntzpG] a (49c) 

Note that both a! and j3 vary with time. 

Aside from the film mass parameter fi which we have intro- 

duced, this equation is identical to the one derived by Plesset 

for the stability of vapor bubbles. Note that our surface tension 

is twice that of Plesset; the difference is caused by the 

occurrence of a foreign material in the film of our problem, 

whereas Plesset considered only an interface between the internal 

and external fluids. 

The differential equation (49) takes on a simpler form if a 

new dependent variable is used. Let 
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A(t) = 6 (t) (a/ao)3'2B (50) 

where a 0 is some constant dimension, characteristic of the 

bubble. Then (49a) is transformed to 

ii t 
where 

g (t) = $ 3 II< > . 2 

28 
-l(t) -I- ; 1 

(51a) 

(51b) 

Equation (51) has a form which lends itself to a "static stability" 

analysis: the criterion for stability is that the acceleration 

be opposite to the displacement.* 

a>g : stable condition (52a) 

cY<g : unstable condition (52b) 

For equations with constant coefficients, we know that (52a) 

corresponds to purely sinusoidal motion as opposed to exponential 

behavior for (52b). Let us now consider three examples- 

Example 1: Bubble Expending at Uniform Rate in Vacuum 

For this case we have p, = 0 

& = 0, a = constant, a = at . 

* The more general criteria are given by Birkhoff (Ref. 11). 
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With these values we find 

!?! = 2n (n-l) (nt2) + 
( ) 

PGa 

j? =lt ns 
( ) G 

3 3 
g =y 

( ) ZB -1 

Now for small a, 

il 2 
0 - a 

3 a2 
2a2 

Hence for sufficiently small a, ~1! - g > 0 and the motion is 

stable. Similarly, for large a 
.2 

B -1, g-- 
4 a2 

Hence for sufficiently large a, M - g < 0 and the motion is 

unstable. The latter case, for which the mass of the film and 

surface tension both become negligible, was treated by Plesset 

(Ref. 6). This instability is not of the Taylor type since a = 0. 

Example 2: Bubble Expanding with Constant Mass Flux in Vacuum 

In the preceding example the mass flux of pressurizing 

gas must increase rapidly with time, so that the energy supplied 

to the bubble also increases. Let us now consider a more likely 

case for which the mass flux of gas is held constant. 

The total mass of gas is MO = 4npGa3/3 and so the mass flux is 
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. 
M = 4rpGa 2. a 

Hence 

and (a/a) = 1/3t , a/a = - 2/9t 2 . 

With these values, and with p = 0 , we find 
e 

Now for small time (small radius) 

o!N 
2(nt2) 

9 t2 

1 
J g-- - 

3 t2 

so that for sufficiently small bubbles 
2ntl Q!- g--- 

9 t2 
and the motion is unstable. Similarly for large time (large 

radius) 

1 
a- n(n-l)(nt2) g--- 

12 t2 
Hence for sufficiently large bubbles o - g > 0 and the motion 

is stable. 

We see that the results for this example are exactly opposite 

those of the first example. It appears that the instability for 

large bubbles is associated with an increasing rate of energy 

44 



supply, as was the case in the first example. Note that these 

results have been obtained for an inviscid fluid, and that viscous 

effects may alter the results, especially at the early stages of 

inflation. 

Example 3: Bubble Oscillating about Equilibrium in Vacuum 

Let us now consider the case in which a bubble has expanded 

beyond its equilibrium radius, and consequently experiences an 

oscillatory motion of the mean radius. For simplicity, we assume 

a = a0 [lt~cos~t ] 

a = -a o co sinWt 

a = -a o co2 cos Wt 
Now we regard the amplitude of the spherical oscillation as small 

compared with the radius, \and, in turn, the perturbation amplitude 
v 

an order of magnitude smaller: 

I I 6 <<cc< a 

Then we can linearize the equation with respect to c . Putting 

r? = 1 (since bubble is large) we have 

C?- g = wZ(a' t q' cos W) 

where 

a' = 2n (n-l)(nt2) 

q’ = - 
c 

3a't(nt *,I c 

(53a) 

(5-I 



Defining the new variable z = Wt , we find that our perturbation 

equation takes on the standard form of the Mathieu equation: 

d2A t (a' 
dz 2 t q' cos z) A = o 

(53c) 

The stability characteristics of Mathieu's equation are dis- 

cussed by Stoker (Ref. 12) as well as many other authors. For 

small q', the solution is stable almost everywhere, with small 

regions of instability located in the vicinity of the points 

a' = k‘/4, q' = 0, where k is an integer. For larger 

4'1 these regions of instability increase in size until the 

solution is unstable almost everywhere for q' >> a' . 

Complete stability diagrams are readily available (see Ref. 13, 

for example) so that the stability of a bubble is easily Y 

determined for particular cases.* For unstable cases, our 

equation (53) ceases to be valid when the perturbation amplitude 

becomes comparable with the original amplitude of oscillation 6. 

The general equation (51b) must be applied then: note however, 

that an analysis such as that of Examples 1 and 2 fails for this 

case since (a' tq' cos z ) can be always positive and yet have 

instability for Mathieu's equation. Thus the "static stability" 

analysis should be used with reservations. (The defects of this 

* Note that several notations are used for Mathieu functions 
Thus Refo 12 and 13 use different definitions of the same symbol. 
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method have been pointed out earlier by Birkoff (Ref. 11). 

For example, bubbles with monotonically varying radius should 

be appropriate for a static stability investigation. 
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VI. CONCLUDING REMARKS 

In this study we have attempted to investigate some of the 

fluid-dynamics problems concerned with blowing bubble-type en- 

closures.in outer space. As a preliminary study, these problems 

were treated using a variety of assumptions and approximations 

in order to determine in a qualitative way the conditions under 

which different physical effects are important. In certain cases, 

the analysis was formulated but no solution was obtained, as in 

the case of self-similar analysis of the motion of the pressuriz- 

ing gas. Here the need for further work is apparent so that the 

accuracy of more approximate methods can be assessed. In other 

cases, the analysis was carried out in sufficient detail to enable 

definite conclusions to be drawn, such as that of Section IV in 

which it was shown that an incompressible analysis is valid only 

for thick-walled bubbles. Thus, the author hopes that this report 

will serve to clarify the role of the various physical effects 

and to stimulate further work in this area. 

The major assumption made throughout this study is that of a 

non-viscous fluid. Since the presence of viscosity should act to 

damp out any perturbing motion of the film*, our inviscid analysis 

* We assume that viscosity does not play a subtle role as in 
fluid boundary layers, where the flow is first destabilized 
and then stabilized again as the viscosity increases. 
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is certainly restricted to relatively low frequencies. The 

determination of the quantitative effect of viscosity on the 

instabilities is perhaps the most important of the problems 

which we leave for future work. 

Finally, it is in order to consider the practical reali- 

zation for the proposed inflation process as a means of forming 

large-surfaced space devices. Such devices may be spherical 

shells, capable of reflecting electromagnetic radiation, such 

as the passive communication satellite. Other applications may 

involve the determination of high altitude properties of plane- 

tary atmospheres. For this purpose, a lightweight, high drag 

object can be ejected from an orbiting exploratory vehicle. 

Optical or radar tracking of the object will then yield data on 

atmospheric density, winds, etc. To obtain meaningful data, it 

will be required that the ejected object be large, of spherical 

symmetry, and of high drag/weight ratio to allow tracking and to 

prevent premature destruction by aerodynamic heating (Ref. 14). 

Two possible concepts of forming extremely large diameter 

and extremely lightweight spheres in space are shown in Figure 4. 

One consists of an extrusion - inflation device similar to those 

used in industrial plastic film forming equipment. It comprises 

a cylinder piston assembly, filled with the liquid material, 

activated by pneumatic pressure. Some additional details of this 
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concept are shown in Figure 5. The other concept involves a 

free-sphere of the liquid, with the inflation device placed in 

the center. For both means of inflation, solvent evaporation 

from the inside surface of-the liquid can be used as a portion 

of the inflation gas source. 

Vacuum deposition of a thin metal film on the sphere's 

inside after completion of the inflation process can be con- 

sidered for applications requiring radar reflectivity. Explora- 

tory experimentation conducted during this study shows the basic 

feasibility of this approach. 

A critical problem that remains to be studied experimentally 

is the effect of vacuum on viscosities, hardening rates, evapora- 

tion rates and surface tensions of candidate liquids. Viscosity 

and surface tension need to be kept sufficiently low to allow 

inflation with a minimum of internal gas mass: hardening rates 

need to remain sufficiently low to permit adequate time for the 

inflation process. Quantitative data can be obtained by fairly 

simple laboratory investigations. These studies also will pro- 

vide data for the analytical process stability investigation in- 

cluding viscosity effects proposed above. 

The results of such a combined experimental - analytical 

study should provide criteria for the inflation gas flow rate 

control system which will be required to insure process stability. 



ORIGINAL’ 
VOLUME 
2.5 CU. FT. 

f’- :, \ \ 1.000 FT. ,I 

FILM THICKNESS - 2 MICRON 
METAL THICKNESS -100% 

WEIGHT: 
1,000 FT. DIA. SPHERE- 
200 LBS. 

Figure 4. Forminq Concept 

Figure 5. Extrusion - Inflation Device 
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